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ABSTRACT: This paper deals with the convergence of the new polynomial-time algorithm developed by N. 

Karmakar and its relationship with thickness of concentric ellipsoids. Herein, we generalize the Karmakar's 

inequality to discuss the bounds of objective function and obtain refind form of Karmakar's Formula for the 

speed of convergence and convergence ration Karmakar's algorithm admits linear convergence in general and 

supper linear convergence in special case which hopelessly turn out to be trivial. We also show the super linear 

convergence of the sequence of the values of the objective function at different points of the polytope 
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I. Introduction 

Karmakar developed a new polynomial-time algorithm and developed an inequality to discuss the bond on 

objective function. We have generalised this inequality and shown there by that smaller the difference between 

the thickness of pairs of concentric elliposoids. faster the convergence. We have constructed a formula for the 

speed of convergence and convergence ratio for the algorithm developed admits linear in special case which 

turn out to be trivial. We have also shown the super linear convergence of the sequence of the values of the 

objective function at different points of the polytope. 

 

II.  Relation between Convergence and Thickness of Concentric Ellipsoid 

 For moving from a point ak to ak + 1 in the ellipsoid Ek + 1 , we have inequality 

  

1

1 1
1

)(

)(










kpk

pk

vfaf

faf
 

 Multiplication of these (k + 1) inequalities gives  
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diminishes as fast as v gets smaller. Hence, smaller the value of v. faster the convergence.   
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minimum. But v will be minimum if each of the factors v1, v2 ….. vk+1 be minimum. These factors will be 

minimum only when the difference of thickness of pair of concentric ellipsoid (Ei, Ei); i = 1, 2, …… k + 1, 

together with Ei  P  Ei; Ei = v1Ei, be minimum. 

 

 Here, Ei be the ellipsoid obtained by magnifying Ei by a suitable large factor vi to contain the polytope P, 

and also the thickness of ellipsoid has been used in the same sense.  

 

III.     Speed of Convergence and Convergence Ratio 

 As we have seen, the optimization of f(x) over the ellipsoid Ek+1, gives the inequality 
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 Now v = (n – 1) the diminished of the simplex, can always be achieved by using a suitable projective 

transformation. 

 

Therefore, the above inequality reduces to  
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 Since the sequence <f(ak)> convergence to fp, the speed of convergence of the sequence will be given by  
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Here the speed of convergence depends on two parameters: First on the non negative number q, and the second, 

on the convergence ratio . Thus the large the value of q, faster the convergence. 

 

IV.      Conclusion 

 Karmarkar's algorithm revolutionized the field of linear programming by introducing a Polynomial-time 

interior point method that out performs the traditional simplex method for large-scale problems. Unlike the 

Simplex method, which moves along the edge the edges of the feasible region, Karmarkar's algorithm moves 

through the interior of the feasible Polytope using projective transformations, ensuring significant 

computational advantage. 

 Karmakar's algorithm marked a major shift in solving linear programming problems both in terms of 

theory and practice by offering a faster, more Scalable alternative to existing method.  
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